Python+OpenCV实时图像处理

目录

1、导入库文件

2、设计GUI

3、调用摄像头

4、实时图像处理

4.1、阈值二值化

4.2、边缘检测

4.3、轮廓检测

4.4、高斯滤波

4.5、色彩转换

4.6、调节对比度

5、退出系统


初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。

1、导入库文件

这里主要使用PySimpleGUI、cv2和numpy库文件,PySimpleGUI库文件实现GUI可视化,cv2库文件是Python的OpenCV接口文件,numpy库文件实现数值的转换和运算,均可通过pip导入。

import PySimpleGUI as sg  #pip install pysimplegui
import cv2  #pip install opencv-python
import numpy as np #pip install numpy

2、设计GUI

基于PySimpleGUI库文件实现GUI设计,本项目界面设计较为简单,设计800X400尺寸大小的框图,浅绿色背景,主要由摄像头界面区域和控制按钮区域两部分组成。效果如下所示:

GUI代码如下所示:

    #背景色
    sg.theme('LightGreen')

    #定义窗口布局
    layout = [
      [sg.Image(filename='', key='image')],
      [sg.Radio('None', 'Radio', True, size=(10, 1))],
      [sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
      [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
      [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
       sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
      [sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
       sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
      [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
       sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
      [sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
       sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
      [sg.Button('Exit', size=(10, 1))]
    ]

    #窗口设计
    window = sg.Window('OpenCV实时图像处理',
               layout,
               location=(800, 400),
               finalize=True)

3、调用摄像头

打开电脑内置摄像头,将数据显示在GUI界面上,效果如下所示:

代码如下所示:

    #打开内置摄像头
    cap = cv2.VideoCapture(0)
    while True:
        event, values = window.read(timeout=0, timeout_key='timeout')

        #实时读取图像
        ret, frame = cap.read()

        #GUI实时更新
        imgbytes = cv2.imencode('.png', frame)[1].tobytes()
        window['image'].update(data=imgbytes)

    window.close()

4、实时图像处理

4.1、阈值二值化

进行阈值二值化操作,大于阈值values['thresh_slider']的,使用255表示,小于阈值values['thresh_slider']的,使用0表示,效果如下所示:

 代码如下所示:

if values['thresh']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
    frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]

4.2、边缘检测

进行边缘检测,values['canny_slider_a']表示最小阈值,values['canny_slider_b']表示最大阈值,效果如下所示:

代码如下所示:

if values['canny']:
    frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])

4.3、轮廓检测

轮廓检测是形状分析和物体检测和识别的有用工具,连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度,效果如下所示:

 代码如下所示:

if values['contour']:
    hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    hue = cv2.GaussianBlur(hue, (21, 21), 1)
    hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
                      np.array([values['contour_slider'] + 30, 255, 220]))
    cnts= cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)

4.4、高斯滤波

进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取values['blur_slider'],效果如下所示:

 代码如下所示:

if values['blur']:
    frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])

4.5、色彩转换

色彩空间的转化,HSV转换为BGR,效果如下所示:

 代码如下所示:

if values['hue']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame[:, :, 0] += int(values['hue_slider'])
    frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)

4.6、调节对比度

增强对比度,使图像中的细节看起来更加清晰,效果如下所示:

  代码如下所示:

if values['enhance']:
    enh_val = values['enhance_slider'] / 40
    clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
    lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
    lab[:, :, 0] = clahe.apply(lab[:, :, 0])
    frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)

5、退出系统

直接break即可跳出循环。

if event == 'Exit' or event is None:
    break

拓展学习:基于Python的人工智能美颜系统 

请关注公众号,回复关键字:OpenCV实时图像处理,获取项目资源。

不脱发的程序猿 CSDN认证博客专家 视觉/OpenCV IoT/嵌入式 Python
大地未绿我先绿,草木已凋我不凋。
<p> <span style="color:#337FE5;font-size:16px;">【课程简介】</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">本课程基于面向PythonOpenCV,以OpenCV的官方文档的知识脉络为主线,</span><span style="font-size:14px;">介绍了OpenCV函数的具体使用方法、函数所使用的算法的具体原理。</span> </p> <p> <span style="font-size:14px;">在介绍函数使用时,提供了大量的程序案例演示。</span> </p> <p> <span style="font-size:14px;">在介绍具体原理时,采用了通俗易懂的语言和贴近生活的示例来说明问题,尽量避免涉及过于复杂抽象的公式。</span> </p> <p> <span style="font-size:14px;"> 课程包含数字图像处理的常用知识点,覆盖面全,方便学员系统深入全面地掌握OpenCV。</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【你将收获什么】</span> </p> <p> <span style="font-size:16px;color:#337FE5;"><span> </span></span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">1.  掌握数字图像的在计算机内表示</span><span style="font-size:14px;"></span><span style="font-size:14px;">的方法和处理的基本原理。掌握数字图像的表示方法是进行图像处理的前提和基础,能够为后续的智能图像处理打下坚实基础。</span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">2.  使用好OpenCV开源库对于提升工作效率具有很大的帮助。OpenCV是优秀的开源库,提供了大量的函数帮助我们提升工作效率。大多数情况下,我们直接调用函数就能够满足我们的需求。同时,它的函数具有较好的交互性,能够根据需要更好地掌控图像处理的具体细节。</span> </p> <p class="ql-long-10663260" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">3.  学习图像处理的常用算法。课程不仅介绍函数的具体使用,也介绍了常用算法的基本原理,帮助学习者更好地理解图像处理的基本逻辑、方法,快速入门图像处理领域。</span> </p> <br /> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【我将如何教你】</span> </p> <p> <span style="font-size:14px;">1)在“黑盒”和“白盒“之间取得平衡</span> </p> <p> <span style="font-size:14px;"> </span><span style="font-size:14px;">可以将OpenCV看成“黑盒”,不用关心其函数是如何实现的。在需要实现某一个功能时,直接调用其对应的函数即可,像使用Photoshop的各种功能一样。也可以将OpenCV看成“白盒”,关注其每一个函数的具体实现,认真研究每一个函数的具体实现方法和实现细节。这两种方式都是学习图像处理的很好方式,但是大多数课程过于强调其中某一种,要么忽略了算法的实现、要么忽略了使用方法。本课程尽量将OpenCV在“黑盒”和“白盒”之间取得平衡。既介绍算法的原理和方法,又将重点放在如何调用函数上,让学习者能够更加游刃有余地在计算机视觉项目中使用OpenCV来解决具体的问题。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">2)将枯燥的算法采用具体的案例介绍</span> </p> <p> <span style="font-size:14px;"> 在图像处理中,有大量的算法保证了</span><span style="font-size:14px;">图像处理的准确、高效。OpenCV将一些常用的算法进行了封装,我们可以直接调用OpenCV的函数来使用对应的算法。但是,深入地理解算法能够帮助学习者更好地使用OpenCV函数。本课程尝试抛弃传统的使用复杂公式介绍算法的形式,尽量通过简单、通俗易懂的生活中实例来帮助学习者理解算法的基本逻辑</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">3)案例驱动、强调实战</span> </p> <p> <span style="font-size:14px;">OpenCV是一个庞大的资源库,提供了非常多的函数帮助我们高效地处理问题。初学者使用OpenCV的最大困惑就是熟练地掌握了每一个函数的调用方法,但是在解决实际问题时,不知道具体应该使用哪个函数。本课程通过大量的具体案例帮助学习快速掌握每个函数的应用场景,快速掌握OpenCV的核心使用方法和技巧。</span><br /> <span style="font-size:14px;"></span><span style="font-size:14px;"></span> </p>
相关推荐
<p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;">基于</span><span style="color:#424242;">OpenCV</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">最新版本</span><span style="color:#424242;">OpenCV4</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">开始,从基础开始,详解</span><span style="color:#424242;">OpenCV</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">核心模块</span><span style="color:#424242;">Core</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">、</span><span style="color:#424242;">Imgproc</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">、</span><span style="color:#424242;">video analysis</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">核心</span><span style="color:#424242;">API</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">与相关知识点,讲解从图像组成,像素操作开始,一步一步教你如何写代码,如何用</span><span style="color:#424242;">API</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">解决实际问题,从图像处理到视频分析,涵盖了计算机视觉与</span><span style="color:#424242;">OpenCV4</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">中主要模块的相关知识点,穿插大量工程编程技巧与知识点与案例,全部课程的</span><span style="color:#424242;">PPT</span><span style="color:#424242;font-size:14px;background-color:#FFFFFF;">课件与源码均可以下载。部分课程内容运行截图:</span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270151327319.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270151199926.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270143028023.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270143153426.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270143373800.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270143508281.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270147189339.png" alt="" /><br /></span> </p> <p> <span style="color:#424242;font-size:14px;background-color:#FFFFFF;"><img src="https://img-bss.csdn.net/201905270147595785.png" alt="" /><br /></span> </p>
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值